通信販売と競争の安定性

小林広和

1 東京大学大学院経済学研究科現代経済専攻博士後期課程 （〒 113-8656 東京都文京区本郷 7-3-1）

消費者が店舗で財を購入する場合には、消費者は店舗までの距離に対して移動費用を払っている。一方、通信販売では、多くの場合、通信販売業者との距離にかかわらず一定で、消費者の選択を制限する。本稿では、このような立地に対して無差別な価格、および限界費用をもつ通信販売業者と、店舗を構え、店頭で財を販売する業者の立地・価格競争を分析する。結果として、消費者の移動費用が線形であり、立地・価格が同時決定であったとしても、あるパラメータの範囲で、純粋戦略ナッシュ均衡が存在する。

Key Words: Spatial competition, Mail order business, linear transport cost, simultaneously move

1. はじめに

本稿の目的は通信販売業者と店頭販売業者の競争を分析し、線形の移動費用・立地価格同時決定という仮定の下でも純粋戦略ナッシュ均衡が存在することを示すことである。

空間競争に関する研究としては、著名な論文である、Hotelling が示す。彼は線分状の都市の中で2つの企業が競争するモデルを考えた。消費者はこの都市上に一様に分布しており、消費者は製品価格と企業まで財を購入するための移動費用の和（full price）がより低い企業、財を単位購入する。彼は、企業が線分上で立地を選べる時に、財の価格が所与であり両者間で等しいならば、均衡では2社とも中央に立地するという最小差別化定理を導出した。しかし、この結論は価格競争がある場合には成立しない。なぜならば、背中合わせで立地することは、同質財のベクトル線競争と同じであり、どちらかの利潤が0となるまで競争が続くからである。

この2企業寡占モデルで立地・価格競争を分析するためには2段階ゲームを考える必要がある d'Aspremont et al. において、立地・価格が同時決定である場合には純粋戦略ナッシュ均衡が存在しないことが記されている。第1段階では各社は立地を選択し、これを所与として、第2段階では各社は価格を決定する。しかし、移動費用が、移動距離に関して線形である場合には純粋戦略ナッシュ均衡が存在しない。純粋戦略が存在するためには、利潤関数がlog擬凹性を満たす必要があることが Caplin and Nalebuff による示され、d'Aspremont et al. では2次関数の移動費用が提案された。

しかしながら、このprice-location2段階ゲーム・2次関数の移動費用を採用するべきであるという論理的背景が存在するわけではない。この組み合わせ以外では純粋戦略ナッシュ均衡が存在しないというネガティブな理由から、多くの研究ではこれらの仮定が採用されている。

本稿では通信販売業者が存在する場合には移動費用が線形で立地・価格が同時決定であっても、純粋戦略ナッシュ均衡が存在しうることを示す。また、本稿では、議論の簡単化のため移動費用は線形のみを考えるが、証明の過程で線形固有の特性を使用したわけではない。つまり、移動費用が移動距離に関して増加関数であれば、純粋戦略ナッシュ均衡が存在することを示すことができる。
度の移動距離に関して無差別であり、価格差別もできない企業のことである。具体的には書籍・家電・食品といった有形財を販売・レンタルし、輸送は宅配業者に委託している企業や CS・BS 放送局、デジタルコンテンツをダウンロード販売する企業などがあげられる。逆に、宅配ピザ店のような自社で配達する企業は含まない。つまり、本稿での通信販売という言葉とは、一般的に使われる通信販売という言葉とは厳密にイコールではない。

近年の流通・IT技術の発展により、このような通信販売による取引が増加している。郵便・電話・FAXといった手段で受け付けた注文を除き、コンピュータワークシステム（インテルネット）を使用した取引だけでも、経済産業省ほか1）の調査によると、2009年日本の住宅における消費者向け電子商取引の市場規模は約6.7兆円であり、取引総額に占める割合は、約2.1%であった。流通・IT技術の発展は通信販売企業の限界費用を低下させていると考えることができる。本稿では、第6章において通信販売企業の限界費用の低下は通信販売企業の需要を上昇させることを示した。

これらの通信販売業者のうちの多くは商品代金のほかに送料を徴収し、宅配業者を利用して消費者の居住地まで財を配送している。このとき、都道府県単位の行政区画内であれば、消費者が請求される送料は、通信販売業者との距離にかかわらず一定である。また、実際に通信販売業者が宅配業者に支払う宅配委託料金も、このような地方区分内であれば、実際に宅配業者が移動した距離にかかわらず一定である。宅配業者は、特定の通信販売業者の荷物だけを配送しているわけではない。また、財を届けるまでにいくつかの配送センターを経由し、一度の配達で大量の荷物を運んでいられるからである。そのため、取引・宅配ごとに実際の距離を直線距離に応じた送料を算定することと煩雑であり、システム化された流通環境からすればナンセンスである。先ほどあげた、電子商取引は、いわゆるダウンロード販売も含まれている。このDL販売も財（デジタルコンテンツ）の輸送にはインターネット回線を利用しているため、財の購入のために消費者・業者が負担する費用は2者の距離とは無差別であると考えることができる。

つまり、ローカルに見れば、通販企業は地域内のどこに財を送ろうが輸送費用は一定であり、また、消費者が負担する送料込み価格も一定である。

このように、通信販売企業と店頭販売企業が競争する状況を分析した研究にBalasubramanian3）やBouckaert4）があげられる。彼らのモデルは円環上と円の中心に立地できる状況を分析している。円の中心に立地できる場合には、円環上のどの点にも同じコストで財を配達できるため、いわゆる通信販売と同じ環境が得られる。本稿のモデルがBalasubramanian3）やBouckaert4）と異なる点は、彼らの論文が、Salop11）と同様に、円環上に立地している企業は等間隔に立地することを仮定しているのに対して、本稿では円環上のどの点に立地するかが企業が選択し、また、立地・価格が同時決定でも純粋戦略ナッシュ均衡が存在することを示したことである。

本稿では3企業寡占問題を解くが、モデルの設定は多地域問題を強く意識したものである。ここで考える都市は、空間上にたくさんあり、それぞれの都市に店頭販売企業が存在する。それに対して、通販企業の拠点は各都市にあるわけではないが、空間上に多数数か所であり、通販企業は、この多数の店頭販売企業と競争している。

よって、通販企業は都市内に立地はせず、都市の外から財を輸送する。店舗の独立性、費用関数の線形性、限界費用、都市の大きさという4つの条件が都市で等しければ、自明に、各企業は1都市の場合と同じ戦略をとるので、多地域に拡張しても本質的には同じである。

本稿では簡単化のため、Vickrey12）、Salop11）らの円環都市モデルを採用する。しかし、線分都市であっても、純粋戦略ナッシュ均衡が存在しいうという結論が同様に得られる。

第2章では、本稿のモデルを示す。第3章では、このモデルでの純粋戦略ナッシュ均衡を探る。第4章では余剰分析を行う。市場均衡と社会最適解を比較する。最後に第5章では、本稿の分析をまとめると。
2. モデル

この章ではモデルの説明をする。都市の長さをLとし、この都市内で同質財を販売する3つの企業が存在する。それらは限界費用mで財を生産し、地域内に1つの店舗を持つ2社の店頭販売企業$i(=1, 2)$と、限界費用mで財を生産・消費者まで宅配する1社の通販企業に分けられる。円環上のある地点からの、企業iまでの時計回りで移動したときの距離をθ_iとし、$\theta = \min(|\theta_i - \theta_j|, L - |\theta_i - \theta_j|)$と定義する。この$\theta$は店舗間の最短距離である。消費者は円環状に1段に分布し、1単位の財を購入する。消費者は通販企業から財を購入するときは、移動コストをかけずに財を購入できるが、店頭で購入する場合には店頭価格とは別に、1単位の距離の移動につき、$t(>0)$単位の費用が掛かる。つまり移動費用は線形である。簡単化のため移動費用は線形のみを考えるが、移動費用が移動距離に関連して増加であれば、純粋戦略ナッシュ均衡は存在することを示す。財は同質的であるので、消費者はfull priceを最も低く設定した企業から財を購入する。このfull priceはmill priceとtransport costの合計である。p_iを企業iのmill priceとし、pを通販企業のfull price、つまり送料込み価格とする。企業iの利潤はp_i、通販企業の利潤はpとする。

本稿では、同時決定ゲームでの純粋戦略ナッシュ均衡が存在することを示す。よって、それぞれの戦略変数、つまり、店舗を持つ企業iは自社のmill pricep_iと立地θ_iを、通販企業は自社のfull pricepを、すべて各社が同時に決定する。

この分析をする上で非常に重要な示唆を与えるものとして、Economidesとある。彼は、留保価格が有限である状況下でのホッピング競争を分析した。その結果、留保価格が十分に低い場合には、純粋戦略ナッシュ均衡が存在することを示した。以下の図1を見てほしい。縦軸は各企業から財を購入したときのfull price及び留保価格、横軸は立地を表す。消費者はfull priceが留保価格を下回る範囲で、よりfull priceが低い企業から財を購入する。

図1 Economidesのfull price

留保価格を所与として、各企業の最適反応は店頭販売価格p'をつける事であったとする。この時、最適反応の定義から、これを上に価格を下げて需要を増やす誘因はない。つまり、あえて価格を下げて相手企業の需要を奪う誘因はない。よって、価格・立地を変更する誘因はないので、純粋戦略ナッシュ均衡が存在する。同様に、通信販売企業の限界費用が十分に低かったとする。消費者は各店頭販売企業のfull priceと通信販売企業の送料込み価格を比較し、最もfull priceの低い企業から財を購入する。この時、通信販売企業は十分低い価格をつけることによって正の需要を得ることができる。

図2 通信販売企業が存在した時のfull price

上の図2のように、通信販売企業が送料込み価格pをつけていたとする。この時、店頭販売企業同士は十分離れており、店頭販売企業の最適反応は店頭販売価格p'をつけることであったとする。Economidesと同様に、店頭販売企業は価格を下げるようて、これ以上の需要を得る誘因はない。よって、純粋戦略ナッシュ均衡がある。
りうる。
　よって、留保価格が十分高かったとしても、通信販売企業の存在によって純粋戦略ナッシュ均衡が存在する可能性がある。本文中では、3社が正の需要を得ている場合を想定し、あるパラメータの範囲で純粋戦略ナッシュ均衡が存在することを示す。そして、補論において、均衡価格と企業の均衡需要量はユニークであること、純粋戦略ナッシュ均衡が存在するパラメータの範囲は店頭販売企業が等間隔に立地しているときに通信販売業者が撤退しない条件と同値であることを示す。

3. 立地・価格競争

最初に、3社が正の需要を得ていて、店頭販売企業同士の需要を重なっていない状況下での、それぞれの利潤関数を求めよう。

企業iから距離xだけ離れている消費者は、通信販売企業から財を購入しても、企業iから財を購入しても無差別であったとしよう。この時、この消費者よりも企業iの近くにいる消費者は、ライバル企業jから財を購入するためのfull priceが、自社や通販企業から財を購入するfull priceを超え、ライバル企業jからは財を購入しないとする。この時、以下の条件が成り立つ。

\[p = p_i + tw \]

このとき、企業iの需要は、企業iの両サイド、距離xまでの消費者からの需要なので、需要関数をD_iとして、

\[D_i = 2x = 2 \left(p - p_i \right) \]

である。これに、マークアップであるp_i-mをかけて、

\[\pi_i = 2(p_i-m) \left(\frac{p-p_i}{t} \right) \]

\[= \frac{-2}{t} \left(\left(p_i - \frac{p + m}{2} \right) ^2 - \frac{(p-m)^2}{4} \right) \]

通信販売企業の需要は、\[\tilde{D} = L - 2D = L - 4\left(\frac{p-p_i}{t} \right) \]

である。これに、マークアップであるp - \hat{m}をかけて、

\[\hat{\pi} = (p - \hat{m}) \left(L - 2\left(\frac{2(p-p_i-p_i)}{t} \right) \right) \]

\[= -\frac{4}{t} \left(p - \frac{Lp + 2p_i + 2p_i + 4\hat{m}}{8} \right) ^2 + \frac{4}{t} \left(\frac{L + 2p_i + 2p_i - 4\hat{m}}{8} \right) ^2 \]

この時、各企業の利潤関数には、店頭販売企業の立地を表す変数θが入っていないことがわかる。よって、店頭販売企業は、自身の立地を変更することによって、利潤を上げることができない。各企業の利潤関数から、通信販売企業は十分に低い価格をつけて、店頭販売企業同士が十分に離れているならば、店頭販売企業の最適反応は、\[p = \frac{p + m}{2} \]であることがわかる。店頭販売企業の価格を所与とすると、通信販売企業の最適反応は、\[p = \frac{L + 2p_i + 2p_i + 4\hat{m}}{8} \]

である。よって、均衡価格は、

\[\frac{L + 8m + 4\hat{m}}{12} \]

である。

店頭販売企業の需要関数は、\[D_i = \frac{L - 4(m - \hat{m})}{6t} \]

である。この均衡価格が成り立つためには、店頭販売企業同士の需要が重ならないことが必要なので、

\[\frac{L - 4(m - \hat{m})}{6t} \leq \theta \leq \frac{L}{2} \]

である。よって、一般的に立地はユニークではない。そして、純粋戦略ナッシュ均衡が存在するならば、等間隔立地である \(\theta = L/2 \) は均衡立地のひとつである。

均衡条件が満たされていたらとする。この時、社会余剰は限界費用と輸送費の総和で決まるため、3社がどれだけの需要を得ているかに依存する。3社の需要関数を見ればわかるように、3社の需要は店頭販売企業の立地によらない。ゆえに、立地によらず、社会余剰は一定である。

そして、純粋戦略ナッシュ均衡が存在する条件は均衡立地 \(\theta \) が存在することである。ゆえに、

\[\frac{L - 4(m - \hat{m})}{6t} \leq \frac{L}{2} \] が必要である。これを解い
て、\(m - \hat{m} \geq \frac{tL}{2} \)である。つまり、店頭販売企業の限界費用に比べて、通信販売企業の限界費用が極端に高くなってしまってが純粋戦略ナッシュ均衡の存在に必要である。同様に、店頭販売企業の需要関数を見ると、\(m - \hat{m} = \frac{tL}{4} \)のとき、店頭販売企業の需要は 0 になる。店頭販売企業の限界費用が、この値よりも通信販売企業の限界費用に比べて高かったとする。このとき、通信販売企業は、送料込み価格を店頭販売企業の限界費用と等しくする。店頭販売企業は店頭販売価格を自社の限界費用と等しくする。よって、店頭販売企業の需要が 0 となる。店頭販売企業の需要が 0 であるため、すべての立地の組み合わせが均衡立地となる。以上をまとめると以下の図 3 のようになる。

綫軸に店頭販売企業と通信販売企業の限界費用の差、横軸に移動費用の係数と都市の規模の積をとる。ここに、純粋戦略ナッシュ均衡の存在条件をグラフにすると図 3 のようになる。このグラフは 3 つの領域に分けられ、

Area 1. 純粋戦略ナッシュ均衡が存在して、店頭販売企業の需要が 0 である。
Area 2. 純粋戦略ナッシュ均衡が存在して、どの企業も正の利潤を得ている。
Area 3. 純粋戦略ナッシュ均衡が存在しない。

これらを導く条件は、

命題 1

\[
\text{Area 1} \Leftrightarrow m - \hat{m} \geq \frac{tL}{4}
\]

「応用地域学研究」No.16, pp. 55 ~ 66, 2011

Area 2 \(\Leftrightarrow m - \hat{m} \leq \frac{tL}{4} \) \(\wedge m - \hat{m} \geq -\frac{tL}{2} \)

Area 3 \(\Leftrightarrow m - \hat{m} < -\frac{tL}{2} \)

またグラフを見ると、

命題 2

\(m = \hat{m} \)の時、つまり、通販企業が、店頭販売企業と同じ限界費用で消費者まで届けることができるのは、\(t \)及び\(L \)の値にかかわらず純粋戦略ナッシュ均衡が存在する。

書籍等の通信販売企業の限界費用には輸送費が含まれているため、店頭販売企業の限界費用よりも高いと考えられる。一方で、ダウンロード販売や送服務には輸送費がかからないため、命題 2 が成り立ちやすいと考えられる。また、限界費用の差は、購入するまで商品を試すことができないという通信販売の特性による効用の低下分も考えることができる。このような定式化をした先行研究として、Chiang et al. と Aiura がいる。つまり、通信販売サイトのブランド化と輸送条件の改善は同様の影響を与える。

均衡がユニククであるのは、通販企業が必要 0 の時である。このとき、\(\theta = L/2 \)が均衡立地である。一方、線分都市の場合には一般的に最大差別化立地は成り立たない。なぜなら、都市の中央の需要を通販販売企業が得ているならば、店頭販売企業はわずかに中央寄りに移動することで、価格を変えることなく、需要を増やすことができるからである。

ここで、不撤退条件を定義する。

定義 不撤退条件とは、純粋戦略の組の中で、限界的で自社の価格を下げることによって、正の需要が得られる条件のことである。

つまり、均衡において自社の需要が 0 であったとしても、他社から購入しても自社から購入しても無差別であると考える消費者がいる場合は、不撤退であるとする。

この不撤退条件は、先行研究と本稿を関連づけるものである。店頭販売企業の立地が \(\theta = L/2 \) で所与であったとしよう。店頭販売企業の立地が最大差別化で所与であったとしたとき、モデルの設
定はBalasubramanian3)やBouckaert4)と等しい。この条件のもとでの純粋戦略ナッシュ均衡において不撤退条件が満たされていなかったとしよう。この時、立地が所与でなく、店頭販売企業が自由に立地を選択できたならば、ライバルと同じ地点に立地し、undercut（すべての地点において、より低いfull priceを設定すること）することによって利益を上げることができる。立地が最大差別化で所与である先行研究の条件のもとでの純粋戦略ナッシュ均衡が存在し、かつ、不撤退条件を満たさないパラメータの組が与えられたとする。このパラメータの組み合わせの下では、立地を自由に選択できる本稿のモデルでも、純粋戦略ナッシュ均衡は存在しない。

4. 余剰分析

本章では、社会最適解と市場均衡を比較する。仮定から、需要は非弾力的であるため、各企業の生産費と消費者の移動費用の和を比較すればよい。

市場均衡における店頭販売企業の需要は、

\[
D_i = \begin{cases}
0 & \text{if } \hat{m} - m < -\frac{tL}{4} \\
\frac{tL - 4(m - \hat{m})}{6t} & \text{if } \hat{m} - m \in \left[-\frac{tL}{4}, \frac{tL}{2}\right] \\
\frac{L}{2} & \text{if } \hat{m} - m > \frac{tL}{2}
\end{cases}
\]

である。これによりして、社会的最適解は、

\[
m \geq \hat{m}
\]

であるならば、通販企業がすべての消費者に財を供給すべきであることは自明である。

\[
m < \hat{m}
\]

のとき、最適な店頭販売企業の需要は、需要者の移動費用が通販企業の限界費用と店頭販売企業の限界費用の差を下回る範囲で決まる。

ゆえに、最適な店頭販売企業の需要を\(x^*\)とし、

\[
x^* = \frac{2(\hat{m} - m)}{t}
\]

である。

\(D_i\)と\(x^*\)以下のグラフのように描ける。

図4 市場均衡需要と社会最適解

\[
\hat{m} - m \in \left\{ x \mid x \in \left(-\infty, -\frac{tL}{4}\right) \cup \left(-\frac{tL}{4}, \frac{tL}{2}\right) \right\}
\]

のとき、社会最適解と市場均衡は一致し、\(\hat{m} - m \in \left(-\frac{tL}{4}, \frac{tL}{2}\right)\)ならば店頭販売企業からの需要が過少、\(\hat{m} - m \in \left[\frac{tL}{8}, \frac{tL}{2}\right)\)ならば店頭販売企業からの需要が過剰となる。

\[
\frac{tL}{8} = \frac{1}{2} \left(-\frac{tL}{4} + \frac{tL}{2}\right)
\]

である。つまり、市場均衡で通販企業独占となる場合や通販企業の需要が0となる場合のそれぞれの境界の限界費用の差の平均と実際の限界費用の差が一致することが、市場均衡と社会最適解が一致する条件である。そして、それよりも通販企業が有利ならば、店頭販売企業は過剰需要であり、通販企業が不利ならば、店頭販売企業の需要は過少需要である。つまり、相対的に有利な主体は、社会最適解の需要に比べて、需要を減らしつつも価格を上昇させ、利益を増やしている。逆に、その反作用として不利な主体が需要を増やしている。

また、店頭販売企業に財1単位当たり、

\[
\hat{m} - m - \frac{tL}{8}
\]

の徴税・補助金をかけることによって、社会的最適解を達成できる。

通信販売企業が存在する状況での社会余剰を分析した先行研究として、Nakayama3)がある。この研究によれば、通信販売企業が存在すると、そうでない場合に比べて消費者余剰は上昇するけれども、総余剰は上昇するとは限らないというものである。本稿の場合、通信販売企業が存在しな
5. 結語

本稿では、通信販売と競争の安定性について議論した。結果としては、線形の移動費用かつ立地価格同時決定という仮定の下でも、純粋戦略ナッシュ均衡が存在する可能性がある。そして、純粋戦略ナッシュ均衡が存在する条件は、店頭販売企業が等間隔に立地しているときに通信販売業者が不撤退である条件と同値であることを示した。

今日においては、ITの発達により、多くの財が通信販売で取引されるようになった。このことは、過去の先行研究で問題視されていたような、2次関数以外の移動費用の設定・価格と立地が自由に変更できる長期均衡を考えたとしても、競争の安定性をもたらす可能性を示唆している。

また、通販企業が店頭販売企業と同じ限界費用で消費者まで届けることができるのは、1単位当たりの移動費用の値や都市の規模にかかわらず、純粋戦略ナッシュ均衡が存在する事を示した。一般的に通信販売を聞いて想像するような、形ある物品を販売する場合、宅配業者に輸送を委託する費用だけ通販企業の限界費用が高いと考えるのか自然であろう。このときは、純粋戦略ナッシュ均衡が必ず存在するとは言えず、1単位当たりの移動費用の値や都市の規模が十分大きい必要がある。しかしながら、今日では、技術の発展により、CS・BS放送局、デジタルコンテンツをダウンロード販売する企業が売り上げを伸ばしている。これらの企業は、財・サービスの限界的な輸送にコストがほとんどかからない。よって、命題2の条件を満たしている可能性が高いと考えられる。

謝辞: 本研究の実施に当たって、田淵隆俊教授（東京大学経済学研究科）には終始指導をしていただいた。また、相浦洋志准教授（大分大学経済学部）には応用地域学会において、大変有益なコメントをいただいた。そして、編集委員長、2名の匿名の査読者の方々から頂いた多数の有益なコメントにより、本稿を改善することができた。ここに深く感謝の意を表しておきたい。本文における誤りは、すべて筆者の責任に帰するものである。

6. 付録

この付録では、本文で求めた純粋戦略ナッシュ均衡の戦略の組のほかに純粋戦略ナッシュ均衡が存在しないことを示す。

(1) 店頭販売企業の利潤

\[f_{i}(p) \]

\[\begin{align*}
& \text{if } p_i \leq p \\
& \quad \text{type 1} \\
& \text{if } (p_i - p) / (2t) \\
& \quad \text{type 2} \\
& \text{if } p_i + p_{i+1} + t \leq p/2 \\
& \quad \text{type 3} \\
& \text{if } 2p_i - 3p_{i+1} + p_{i+2} \\
& \quad \text{type 4}
\end{align*} \]

\[\pi_i = \begin{cases}
0 & \text{if } p_i \geq p \\
2(p_i - m)(p_i - p) & \text{type 1} \\
\frac{p_i - p}{2t} & \text{type 2} \\
\frac{p_i + p_{i+1} + t}{2} & \text{type 3} \\
\frac{2p_i - 3p_{i+1} + p_{i+2}}{2t} & \text{type 4}
\end{cases} \]
各Typeの条件を言葉で書くと以下のようになる。

Type 1. 通販企業に undercut されている。
Type 2. 正の需要があって、ライバル企業jとはシェアが重ならない。通販企業の需要も正である。
Type 3. 正の需要があってライバル企業jとはシェアが重なっている。通販企業の需要も正である。
Type 4. 正の需要があって、ライバル企業jを undercut している。通販企業の需要も正である。
Type 5. 正の需要があってライバル企業jとはシェアが重なっている。通販企業の需要は0である。
Type 6. 正の需要があって、ライバル企業jを undercut している。通販企業の需要は0である。
Type 7. ライバル企業jに undercut されている。

ここでは、例として、Type 2とType 3の利潤関数の導出過程を示す。

a) Type 2

企業iから距離xだけ離れている消費者は、通販企業財を購入しても企業i財を購入しても無差別であったとしよう。この時条件から、この消費者よりも企業iの近くにいる消費者は、ライバル企業jから財を購入するためのfull priceが、自社や通販企業からの財を購入するfull priceを超えるため、ライバル企業jからは財を購入しない。この時、以下の条件が成り立つ。

\[p_i - p_j \leq \alpha \]

このようなとき、企業iの需要は、企業iの両サイド、距離xまでの消費者からの需要なので、需要関数を \(D_i \) として、

\[D_i = 2x = 2 \frac{p_i - p_j}{t} \]

である。これに、マークアップである \(p_i - m \) をかけて、

\[\pi_i = 2(p_i - m) \frac{p_i - p_j}{t} \]

b) Type 3

企業iからyだけ離れた消費者の一方は企業iから財を購入しても、企業jから財を購入しても無差別であり、通販企業からの財を購入する場合にはより高いfull priceを払う必要があるとする。また、企業iからzだけ離れた消費者の一方は企業iから財を購入しても、通販企業からの財を購入しても無差別であり、企業jから財を購入する場合はより高いfull priceを払う必要があるとする。この時以下の条件が成り立つ。

\[p_i + ty - p_j + t(\theta - y) \]

\[p_i + tz = p \]

需要関数を \(D_i \) として、

\[D_i = y + z = \frac{\theta}{2} + 2p - 3p_i + p_j \]

である。これに、マークアップである \(p_i - m \) をかけて、

\[\pi_i = (p_i - m) \left(\frac{\theta}{2} + \frac{2p - 3p_i + p_j}{2t} \right) \]

(2) 通販企業の利潤

次に通販企業の利潤関数を求める。

\[(p_i - m) \frac{L}{2} \left(\frac{L - 2(p_i - p_j)}{t} \right) \]

if \(p > p_j, p \leq p_i \) (TypeA)

\[(p_i - m) \frac{L}{2} \left(\frac{L - 2(p_i - p_j)}{t} \right) \]

if \(p_i \geq t \frac{L}{2} \geq p \) (TypeB)
ここでは、例として、Type BとType Dの利潤関数の導出過程を示す。

a) Type B
Type 2のとき、店頭販売企業の需要は
\[D_1 = 2 \frac{p-p_i}{t} \]
であり、一方の企業が店頭販売企業の需要を引きと通販企業の需要が求まる。通販企業の需要を\(\hat{D} \)として、

\[\hat{D} = L - \frac{p-p_i}{t} \]
マークアップである\(p-\hat{m} \)をかけて、

\[\hat{x} = (p-\hat{m}) \left(L - 2 \frac{p-p_i}{t} \right) \]

b) Type D
Type 3のとき、店頭販売企業の需要は
\[D_2 = \frac{\theta}{2} + 2p - 3p_i + p \]
である。全体の需要が通販企業の需要を引きと通販企業の需要が求まる。通販企業の需要を\(\hat{D} \)として、

\[\hat{D} = L - \theta - 2 \frac{p-p_i-p_m}{L} \]
マークアップである\(p-\hat{m} \)をかけて、

\[\hat{x} = (p-\hat{m}) \left(L - \theta - 2 \frac{p-p_i-p_m}{L} \right) \]

(3) 立地・価格競争
次に、均衡が満たすべき条件を求める。均衡となる条件の組はどの企業も撤退しない場合にはType 2とType Cの条件を満たし、店頭販売企業の需要が0になる場合には、Type 1とType Aの条件を満たし、これら以外には純粋戦略ナッシュ均衡が存在しないことを示す。

a) 店舗の限界費用が通販企業の価格を下回る
なら、Type 1は均衡にならない。店舗の限界費用が通販企業の価格を下回るなら\(p > m \)である。ライバル店舗\(j \)の最適戦略は自
明に $m \leq p_i \leq p$ の範囲に制限できる。このとき、
企業 i は $m < p_i < p$ となる価格をとり、$\theta = 0$ とす
ることによって正の利潤を得ることができる。
よって、店舗の限界費用が通販企業の価格を下回
るなら、Type 1 は均衡にならない。

$p \leq m$ であるならば、正の需要を得ようとすれ
ば、マークアップが負になってしまう。よって、
このときは、$p = m$ とするのが最適である。

店舗の限界費用が通販企業の価格を下回るなら、
通販価格から僅かに低い価格をつけることに
よって、正のマークアップと正の需要を得ることができる。よって、正の利潤を得ることができる。

b) Type 3 は均衡にならない

Type 3 の利潤の式を見ると、店舗の利潤は θ
に関して単調増加であることがわかる。よって、店
舗間隔を広げることにより利潤を上げることができ
るので、Type 3 は均衡にはならない。ただ
し、θ が 0 から $L/2$ までの範囲をとる。した
がって、$\theta = L/2$ のとき、この戦略は取れない。
しかしこの状況を制約条件に代入すると、$p < \frac{1}{2}
\left(p_i + p_j + t \frac{L}{2} \right) < p$ となる。よって、このとき、
Type 3 になることはなく、これは Type 5 のケースである。

この状況は、店頭販売企業がお互いの需要を食
い合っている状態である。通販企
業の価格は立地によらないため、店頭販売企業はお互いに離れることによって需要を増やすことができる。

c) Type 4 は均衡にならない

この戦略の組はライバル店舗 j が undercut さ
れている状態である。Type 1 でみたように、ライ
バル企業 j は $\theta = 0$ をとって、undercut すること
によって正の利潤を得られるので、Type 4 は均衡
にならない。

d) Type 5 は均衡にならない

利潤関数に制約条件を代入すると以下の不等
式を得る。

$$\frac{(p_i - m)(2(p_i - p_j) + tL)}{2t} < \frac{(p_i - m)(2(p_i - p_j) + 2p + t\theta - p_i - p_j)}{2t}$$

不等式右辺は、Type 4 の利潤関数に等しい。
よって、$p_i < p_j$ のとき、企業 i は $\theta = 0$ をとど、ラ
イバル企業 j を undercut することによって、利
潤を上げることができる。$p_i = p_j$ のときは、p_iよ
り少しだけ低い価格、p_j をとることによって、

$$\frac{2(p_i - m)(p - p_j)}{t} < \frac{2(p_i - m)(p - p_j)}{t}$$

という不等式を満たすことが
できるので、やはり、企業 i は $\theta = 0$ をとり、ラ
イバル企業 j を undercut することによって、利
潤を上げることができる。よって、Type 5 は均衡
にならない。

店頭販売企業が需要を食い合っている状態で
ある。ライバル企業 j と同じ地点に立地して、ラ
イバル企業 j もよりわずかに低い価格をつければ、
最初にライバル企業 j が得ていた利潤よりも
大きな利潤を得ることができる。

e) Type 6 は均衡にならない

Type 4 で見たのと同様に、この戦略の組はラ
イバル企業 j が undercut されている状態である。
Type 1 でみたように、ライバル企業 j は $\theta = 0$ を
とど、undercut することによって、正の利潤を
得られるので、Type 6 は均衡にならない。

f) Type 7 は均衡にならない

この戦略の組は自社が undercut されている状
態である。よって、同様に Type 7 は均衡になら
ない。

同時決定であるため、両店舗が Type 2 を選択
するならば、通販の利潤関数は Type C に制限さ
れ、両店舗が Type 1 をとるならば、通販企業の
利潤関数は Type A に制限される。よって、純粋
戦略ナッシュ均衡が存在するとしたら、どの企業
の需要も 0 にならない場合には Type 2 と Type C
の条件を満たし、店頭販売企業の需要が 0 になる
場合には、Type 1 と Type A の条件を満すことが
わかる。そして、通販企業の撤退条件が満たされ
る状況では、純粋戦略ナッシュ均衡は存在しな
い。
（4）企業の最適行動
次は上の条件を満たすうえで、各企業の最適行動を探す。

$p_i < p$ となる下で、店頭販売企業の最適化問題を解こう。通販価格 p を所与として、ライバル店頭販売企業 j の価格 p_j は自社価格 p_i を上回っているとする。自社がライバルと同じ地に立地することによって、ライバル店頭販売企業の需要を 0 にすることができる。この時、実現する条件は Type 2 ないし Type 6 に限定される。自社と通販企業の競争になるからである。Type 6 は限界的に価格を上げても需要が減少しないため、最適でないことがわかる。よって，Type 2 の利潤関数，

\[
\tilde{\pi} = (p - \hat{m}) \left(L - \frac{2(p - p_1 - p_2)}{t} \right)
\]

\[
= -\frac{4}{t} \left(p - \frac{tL + 2p_1 + 2p_2 + 4\hat{m}}{8} \right)^2 + 4 \left(\frac{tL + 2p_1 + 2p_2 - 4\hat{m}}{8} \right)^2
\]

よって、通販企業は，

\[
p = \frac{tL + 2p_1 + 2p_2 + 4\hat{m}}{8}
\]

とするのが Type C で最適である。全企業の最適化条件から，

\[
p_i = \frac{tL + 8m + 4\hat{m}}{12}
\]

\[
p = \frac{tL + 2m + 4\hat{m}}{6}
\]

このとき，\[
\tilde{\pi} = \frac{1}{2t} \left(\frac{L + 8m + 8\hat{m}}{12} \right)^2
\]

店頭販売企業がこの価格をとるととき、通販企業が Type D となるように価格を変更する誘因が無いことを調べる。同様に、店舗の価格を所与として、通販が Type D 内に価格をとったとき、通販企業の利潤関数は，

\[
\tilde{\pi} = (p - \hat{m}) \left(L - \frac{2(p - p_1 - p_2)}{t} \right)
\]

\[
= -\frac{2}{t} \left(p - \frac{tL + 2p_1 + 2p_2 + 2\hat{m}}{4} \right)^2 + \frac{t}{8} \left(L - \theta + \frac{p_1 + p_2 - 2\hat{m}}{t} \right)^2
\]

ここで関数 $\hat{\pi}$ を定義する。

\[
\hat{\pi} = \frac{1}{2t} \left(\frac{L + 6L\theta + 8m - 8\hat{m}}{12} \right)^2
\]

この関数は Type D の条件を満たさないとき、通販企業が得られる利潤率が低い値をとる。ただし、このとき、自明に利潤関数は最大である。よって、Type D の条件を満たさないとき，$\hat{\pi} \leq \pi$

\[
\theta = L/2\text{のとき，このケースは店舗を undercutする場合を特殊ケースとしている。Type D に逸脱する条件は，}\;
\hat{\pi} > \pi \iff \frac{tL}{2} < \hat{m} - m\text{このときマークアップは，} \hat{m} - \hat{m} = \frac{1}{6} (tL + 2m - 2\hat{m}) < 0
\]

マークアップが負となるので、通販はこの時撤退する。通販撤退条件は，

\[
p = \frac{tL + 2m + 4\hat{m}}{6}
\]

である。通販が撤退しない状況では、通販企業は Type C から離れる誘因が無く，

\[
p = \frac{tL + 8m + 4\hat{m}}{12}
\]

とするのがグローバルで最適である。

逆に，$tL - 4m + 4\hat{m} < 0\text{となるときは店舗のマークアップが負となり，店舗は撤退する。店頭販売企業撤退条件は，}$

\[
m - \hat{m} < \frac{tL}{4}
\]

である。この時、各企業の最適な価格設定は $p_i = p = m$ である。

ゆえに、純粋戦略ナッシュ均衡が存在する事とは、店頭販売企業が等間隔に立地することが所与であったとき、通販が撤退しない事と同値である。直観的にはこうである。店頭販売企業のシェアが重ならないくらいお互いに十分離れているとき、限界的に立地を変更しても、どの企業の需要の価格弾力性も、費用も変わらない。ゆえに、純粋戦略ナッシュ均衡が存在する。しかしながら、
このようなことがいえるのは、店頭販売企業のシェアが重ならないように離れることができるときである。つまり、言い換えれば、通販企業が、シェアを持っていることが必要である。

さて、通販企業が正の需要を得、市場を独占していないとき、通販企業の需要関数は、

\[D = 2 \frac{tL + (m - \bar{m})}{3t} \]

である。通販販売企業の需要は自社の限界費用\(\bar{m}\)の減少関数である。つまり、通信販売企業の限界費用の下落は、通信販売企業の需要の上昇をもたらす。近年ではインターネットなどで通信販売の注文ができるようになった。かつてのように、カタログを見て、手紙で郵送して注文するよりも手軽になってきているため、近年では通信販売の売り上げが伸びていると考えられる。

参考文献
1) 経済産業省、次世代電子商取引推進協議会：平成21年度電子商取引に関する市場調査。2010。
4) Bouckaert, J.: Monopolistic competition with a mail order business, Economics Letters, Vol.66, pp.303-310, 2000。
10) Nakayama, Y.: The impact of e-commerce: It always benefits consumers, but may reduce social welfare, Japan and the World Economy, Vol.21, pp.239-247, 2009。

（2011年7月3日受理）
（2012年1月16日受理）

Stability in competition with mail-order business

Hirokazu KOBAYASHI

In purchasing a good at a mill-pricing firm, a consumer pays not only a good’s price but also a shopping transport cost, which depends on the distance between home and firm locations. In contrast, if he purchases a good from a mail-order firm, it delivers to his home and normally charges a constant price irrespective of his location. This paper analyzes price-location competition among mill pricing firms and a mail-order firm, whose price and marginal cost do not depend on location. It is shown that there exist Nash equilibria in pure strategies in a range of parameter values even under the linear transport cost and under the simultaneous determination of price and location.